ISSN 1600-5368

Xin-Hong Chang

Department of Chemistry, Luoyang Teachers' College, Luoyang 471022, People's Republic of China

Correspondence e-mail: xinhong_chang2006@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.054 wR factor = 0.133 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 21 March 2007

Accepted 2 April 2007

4-(5-Methyl-1H-pyrazol-3-yl)pyridine monohydrate

In the title molecule, $C_9H_9N_3 \cdot H_2O$, the dihedral angle between the planes of the pyridine and pyrazole rings is 27.52 (2)°. In the crystal structure, intermolecular $N-H\cdots O$, $O-H\cdots N$ and weak $C-H\cdots O$ hydrogen bonds help stabilize the crystal structure.

Comment

4-(5-Methyl-1*H*-pyrazol-3-yl)pyridine and its derivatives are the subject of intensive study as ligands with N and S donor sets (Ibrahim *et al.*, 2006). In the present paper, we report the crystal structure of 4-(5-methyl-1*H*-pyrazol-3-yl)pyridine, which crystallizes as a monohydrate, (I) (Fig. 1). The bond lengths and angles are within the normal ranges (Allen *et al.*, 1987). The dihedral angle between the planes of the pyridine and pyrazole rings is 27.52 (2)°. Intermolecular N-H···O, O-H···N and C-H···O hydrogen bonds help stabilize the crystal structure (Table 1, Fig. 2).

Experimental

The title compound, (I), was prepared according to the method of Tarrago *et al.* (1980). A 250 ml round-bottomed flask was charged with 16.32 g (0.1 mol) of 4-acetoacetylpyridine and 100 ml of absolute ethanol. Into the stirred mixture, aqueous hydrazine hydrate (6.25 g, 0.1 mol, 80%) was added dropwise. This mixture was stirred at room temperature for another 3 h and filtered. The resulting crystals were recrystallized from absolute ethanol and then from a mixture of ethanol and petroleum ether (1:1 v/v).

Crystal data	
$C_{9}H_{9}N_{3} \cdot H_{2}O$ $M_{r} = 177.21$ Monoclinic, $P2_{1}/c$ $a = 7.568 (2) Å$ $b = 8.621 (3) Å$ $c = 14.704 (4) Å$ $\beta = 95.652 (5)^{\circ}$	$V = 954.6 \text{ (5) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 173 (2) K $0.28 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer4391 measured reflections
1756 independent reflections
1174 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.052$ $R_{int} = 0.977, T_{max} = 0.990$ $R_{int} = 0.052$

© 2007 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.133$	independent and constrained
S = 0.99	refinement
1756 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7\cdots O1^{i}$ $O1-H2\cdots N2^{ii}$	0.95 0.91	2.55 1.94	3.450 (3) 2.844 (3)	159 170
$N3-H3A\cdotsO1^{iii}$	0.95	1.77	2.724 (2)	178
Symmetry codes: $x_1 - y + \frac{1}{2}, z - \frac{1}{2}$	(i) $-x + 1$,	-y, -z + 1;	(ii) $-x + 1, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (iii)

All C-bound H atoms were placed in calculated positions, with C-H = 0.95 or 0.98 Å, and included in the final cycles of refinement using

Figure 2 Partial packing plot of (I). Hydrogen bonds are shown as dashed lines.

a riding model, with $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}({\rm C})$ for aromatic H atoms and $1.5U_{\rm eq}({\rm C})$ for methyl H atoms. N-bound and O-bound H atoms were refined as riding in their as-found positions with the $U_{\rm iso}({\rm H})$ values refined freely (N-H = 0.95 Å, and O-H = 0.91 and 0.94 Å).

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1999); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT (Version 6.36a) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ibrahim, M. M., Olmo, C. P., Tekeste, T., Seebacher, J., He, G., Maldonado Calvo, J. A., Bohmerle, K., Steinfeld, G., Brombacher, H. & Vahrenkamp, H. (2006). *Inorg. Chem.* 45, 7493–7502.
- Sheldrick, G. M. (1996). SADABS. Version 2.0. University of Göttingen, Germany.
- Tarrago, G., Ramdani, A., Elguero, J. & Espada, M. (1980). J. Heterocycl. Chem. 17, 137–142.